
Zenbo Store In-app Purchases 

 

Overview 

This document describes the fundamental In-app Purchases components and features that you 

need to understand in order to add In-app Purchases features into your application. 

 

In-app Purchases API 

Your application accesses the In-app Purchases (IAP) service using an API that is exposed by 

the ZenboStore that is installed on Zenbo. The ZenboStore app then conveys purchase requests 

and responses between your application and the ASUS server. In practice, your application 

never directly communicates with the ASUS server. Instead, your application sends purchase 

requests to the ZenboStore app over interprocess communication (IPC) and receives responses 

from the ZenboStore app. Your application does not manage any network connections between 

itself and the ASUS server. 

 

You can implement IAP only in applications that you publish through ZenboStore. To complete 

IAP requests, the ZenboStore app must be able to access the ASUS server over the network. 

 

In-app Products 

The products are the digital products that you offer for sale to users from inside your 

application. Examples of digital products include in-game currency, application feature 

upgrades that enhance the user experience, and new content for your application. 

 

You can use IAP API to sell only digital content. You can't use IAP to sell physical products, 

personal services, or anything that requires physical delivery. Unlike with priced applications, 

there is no refund window after the user has purchased an IAP product. 

 

ZenboStore does not provide any form of content delivery. You are responsible for delivering 

the digital content that you sell in your applications. IAP products are always explicitly 



associated with only one app. That is, one application can't purchase an IAP product that is 

published for another app, even if they are from the same developer. 

 

Product types 

IAP supports different product types to give you flexibility in how you monetize your 

application. In all cases, you define your products using the Zenbo developer Console. 

 

 Non-consumable Items 

Typically, you would not implement consumption for in-app products that can only be 

purchased once in your application and provide a permanent benefit. Once purchased, 

these items will be permanently associated to the user's ASUS account. An example of a 

non-consumable in-app product is a premium upgrade or a level pack. 

 Consumable items 

In contrast, you can implement consumption for items that can be made available for 

purchase multiple times. Typically, these items provide certain temporary effects. For 

example, the user's in-game character might gain life points or gain extra gold coins in 

their inventory. Dispensing the benefits or effects of the purchased item in your 

application is called provisioning the in-app product. You are responsible for controlling 

and tracking how in-app products are provisioned to the users. 

 

Zenbo IAP Flow 

ZenboStore uses the same backend checkout service that is used for application purchases, so 

your users experience a consistent and familiar purchase flow. You must have a ZenboStore 

payments merchant account to use the IAP service on ZenboStore. 

 

To initiate a purchase, your application sends a purchase request for a specific product. 

ZenboStore then handles all of the checkout details for the transaction, including requesting 

and validating the form of payment and processing the financial transaction. 

 

When the checkout process is complete, ZenboStore returns the purchase details to your 

application, such as the order number, the order date and time, and the price paid. At no point 



does your application have to handle any financial transactions; that role belongs to 

ZenboStore. 

 

IAP Library 

To simplify development with the IAP API, you can use the IAP Library. This library is an IAP 

client developed as a wrapper on top of the Android Interface Definition Language file that 

interacts with the IAP API. You can use the IAP Library to help you focus your development 

effort on app logic, such as listing products, displaying product details, or launching purchase 

flows. The IAP Library provides an easier to use alternative to developing with the Android 

Interface Definition Language file. 

 



IAP (In-app Purchases) Library 

Overview 

In-app Purchase on ZenboStore provides a straightforward and simple interface for sending 

IAP requests and managing IAP transactions using ZenboStore. The information below covers 

the basics of how to make calls from your app to the IAP service using the IAP Library. 

 

The IAP Library provides convenience classes and features, which you can use to integrate the 

IAP service with your Android apps. The library is a wrapper for the Android Interface 

Definition Language (AIDL) file that defines the interface to the IAP service. You can use the IAP 

Library to simplify your development process, allowing you to focus your effort on 

implementing logic specific to your app, such as displaying in-app products and purchasing 

items. 

 

Adding IAP library 

To add the IAP library, follow these steps: 

 Copy the jar file of IAP library to your Android project under /libs. 

 Add a dependency “GSON” to your project, specify a dependency configuration such as 

compile in the dependencies block of your build.gradle file. 

dependencies {                  
    //…                    
    compile 'com.google.code.gson:gson:2.+'            
}                     

 

Initiate a Connection with ZenboStore 

To send IAP requests to ZenboStore from your application, you must bind your Activity to the 

ZenboStore IAP service. The labrary includes convenience classes that handle the binding to 

the IAP service, so you don’t have to manage the network connection directly. 

 

To set up synchronous communication with ZenboStore, create an ZenboIabHelper instance in 

your activity's onCreate method, as shown in the following example. In the constructor, pass 



the Context for the activity, a string containing the public license key (AppID) that was 

generated earlier by the Zenbo Developer Console, and the application version. 

 

ZenboIabHelper mHelper;                                 
                              
@Override                   
public void onCreate(Bundle savedInstanceState) {           
   // ...                    
   String appID;                  
   String appVersion;                 
   mHelper = new ZenboIabHelper(this, appID, String.valueOf(BuildConfig.VERSION_CODE));  
}                     
 

Next, perform the service binding by calling the initIabHelper method on the ZenboIabHelper 

instance that you created, as shown in the following example. Pass the method an 

IabInitListener instance, which is called once the ZenboIabHelper completes the asynchronous 

setup operation. The listener is notified by onIabInitResult with the result and the message. 

 

@Override                                                                          
protected void onResume() {                                                           
    super.onResume();                                                               
    mHelper.initIabHelper(new ZenboIabHelper.IabInitListener {          
     @Override                   
     public void onIabInitResult(boolean success, String message) {         
   //…                    
      }                              
  });                                                                           
}                       

 

To unbind and free your system resources, call the ZenboIabHelper's dispose method when 

your Activity is destroyed, as shown in the following example. 

 

@Override                   
protected void onDestroy() {                
    super.onDestroy();                 
    if(mHelper != null) {                
        mHelper.dispose();                
        mHelper = null;                
    }                    
}                     

 

Query Items Available for Purchase 

You can query ZenboStore to retrieve details of the IAP products that are associated with your 



application (such as the product’s price, title, description, and type). This is useful, for example, 

when you want to display a listing of unowned items that are still available for purchase to 

users. 

 

To retrieve the product details, call getProductList (String skuID, String itInType, String 

pubState, IStoreIabCbk listener) on your ZenboIabHelper instance. 

 

 The arguments “skuID”, “itInType”, and “pubState” indicates which product details that you 

want to query. 

 Finally, the IStoreIabCbk argument specifies a listener that is notified when the query 

operation has completed and handles the query response. 

 

If you use the convenience classes provided in the sample, the classes will handle background 

thread management for IAP requests, so you can safely make queries from the main thread of 

your application. 

The following code shows how you can retrieve the details for the product with skuID and 

itInType that you previously defined in the Zenbo Developer Console. 

 

mHelper.getProductList("005 ", "2", "", mGetProductListener);         
                     
IabResultListener mGetProductListener = new IabResultListener() {        
   @Override                 
  
   public void onIabResult(final IabResult result) {           
      if(result.isSuccess()) {                
         Gson gson = new Gson();              
         ProductList list = gson.fromJson(result.getMessage(), ProductList.class);    
         //… use data                 
      } else {                   
     //… handle error                
      }                    
   }                     
};                     

 

If you give empty string parameters for the skuID, itInType, and pubState to the API, the result 

of the API will be the list of all products defined in the Zenbo Developer Console. 

 

mHelper.getProductList("", "", "", mGetProductListener);          

 



Purchasing In-app Billing Products 

Once your application is connected to ZenboStore, you can initiate purchase requests for in-app 

products. ZenboStore provides a checkout interface for users to enter their payment method, so 

your application does not need to handle payment transactions directly. 

 

You can also query ZenboStore to quickly retrieve the list of purchases that were made by the 

user. This is useful, for example, when you want to restore the user's purchases when your user 

launches your app. 

 

Purchase an item 

To start a purchase request from your app, call public void setOrderAndPay(Activity activity, 

int requestCode, String skuID, String totalAmount, String developerPayload) on your 

ZenboIabHelper instance. You must make this call from the main thread of your Activity.  

 

 The first argument is the calling Activity. 

 The second argument is a "request code" that identifies your request. When you receive 

the result Intent, the callback provides the same request code so that your app can 

properly identify the result and determine how to handle it. 

 The third argument is the SKU ID of the item to purchase. 

 The fourth argument is the price of the item to purchase. 

 The fifth argument contains a 'developer payload' string that you can use to send 

supplemental information about an order (it can be an empty string). 

  

int REQ_SET_ORDER = 1000;                
                     
mHelper.setOrderAndPay(MainActivity.this, REQ_SET_ORDER, "sku_001", "20", “Test payload");  

 

ZenboStore returns this request code to the calling Activity’s onActivityResult along with the 

purchase response. The data intent contains IabResult, which is the status of this purchase 

action for the product item. 

 

 



@Override                   
protected void onActivityResult(int requestCode, int resultCode, Intent data) {     
    super.onActivityResult(requestCode, resultCode, data);         
    if(requestCode == REQ_SET_ORDER) {             
        if(data != null) {                
            IabResult result = data.getParcelableExtra(IabResult .EXTRA_IAB_API_RESULT);  
   //handle result. getResponse() and result.getMessage ()       
        }                   
    }                    
}                     

 

Query purchased items 

To retrieve the user’s purchases from your app, call getOrderList(final String orderNo, final 

IabResultListener listener) on your ZenboIabHelper instance. The IabResultListener 

argument specifies a listener that is notified when the query operation has completed and 

handles the query response. It is safe to make this call from your main thread. If the character 

string parameter of orderNo has been set empty, the result of the API will be the list of all 

order purchases. 

 

mHelper.getOrderList("", mGetOrderListener);            
                     
//…                                 
                     
IabResultListener mGetOrderListener = new IabResultListener() {        
    @Override                  
    public void onIabResult(final IabResult result) {           
        if(result.isSuccess()) {               
         Gson gson = new Gson();             
            OrderList list = gson.fromJson(result.getMessage(), OrderList.class);     
         //… use data                 
      } else {                   
     //… handle error                
      }                    
   }                     
};                     

 

 


